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Abstract-Material dynamic mechanical behavior can depend strongly on frequency and tempera­
ture. This dependence is especially significant for elastomers and polymers. such as those used in
bearings and damping treatments. Previous research has yielded a time-domain model of linear
viscoelastic material and structural behavior that captures characteristic frequency-dependent
behavior: continuing research has addressed the accommodation of temperature dependence as
well. The resulting approach is based on the notion of time--temperature superposition for thermo­
rheologically-simple materials. In such materials. temperature effects are experienced primarily
through a temperature-dependent factor multiplying the time scale. The phenomenon of "thermal
runaway", observed in some tests of helicopter elastomeric dampers, motivates a numerical example
of forced vibration of a 40 x 16 x 5 mm elastomeric test specimen in simple shear. For forcing at
1500 Nand 4 Hz, and the temperature on one face held constant, the temperature at the thermally
free face increases by about 3 K. For forcing at 3000 N. the temperature rapidly increases more
than 35 K, and displacement amplitudes increase by more than a factor of 4. The coupled-field finite
element simulation evidently captures the key features of observed material response, including a
rapidly increasing rate of temperature change and an accompanying stiffness reduction.

INTRODUCTION

Vibration damping is essential to the attainment of performance goals for engineered
systems that can exhibit significant structural dynamic response. Passive structural damping
can be increased most predictably through the use of materials with known damping
properties. Because of the potential for practical payoffs, some research efforts have pursued
the development of structural materials (typically composites) with increased damping
properties. However, the most common method used today to increase structural damping
involves the use of non-structural materials, typically high-damping viscoelastic polymers
or elastomers (Nashif et at., 1985).

The mechanical properties of these "damping materials" are often sensitive to
frequency, temperature, type of deformation (i.e. shear or dilation) and sometimes ampli­
tude. To ensure design adequacy, performance is usually evaluated analytically at a few
specific temperatures that span the expected operating range of the system of interest.
Material properties appropriate to each single temperature of interest are used in these
analyses. A time-domain modeling approach capable of including temperature effects
directly would be useful, especially in applications where dissipative self-heating is impor­
tant, such as in helicopter lead-lag dampers (Hausmann and Gergely, 1992).

Damping models currently available in commercial finite element software (e.g. viscous
damping, proportional damping, hysteretic or structural damping and viscous modal damp­
ing) are generally not physically motivated. These models do not explicitly preserve the
fundamental temperature-dependent or frequency-dependent behavior of real materials,
and each suffers in practice from one difficulty or another. Although better accuracy is
potentially available through the use of material models like general viscoelasticity, such
models are not widely used in engineering applicalions.
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The most common approach to analysis ofdamping designs using viscoelastic polymers
is perhaps the modal strain energy (MSE) method (Rogers et al., 1981). In this approach,
a modal analysis of an elastic structure is performed using material properties appropriate
to one specific temperature and frequency. Effective modal damping ratios are found for
each normal vibration mode as a weighted sum of the damping of the constituent materials,
where the weighting factor is the fraction of total modal strain energy stored in each. When
several modal damping ratios are to be determined, use of the MSE method involves an
iterative process. Because of the frequency dependence of material properties, suitable
definition of each mode requires the use of properties appropriate to a (small) frequency
range containing that modal frequency.

Dynamic models based on the use of the typical MSE method and "modal damping"
can have several weaknesses: iteration is required to determine the modal damping for each
vibration mode in the frequency range of interest, the resulting modes are not orthogonal
in any familiar sense because of the non-uniqueness of the stiffness matrix, the relative
phase of vibration at various points on a structure is neglected and modes that are ciosely­
spaced in frequency may be predicted poorly. In addition, the effects of dissipative self­
heating on material behavior are usually neglected or, at best, considered only crudely.

The development ofmodeling approaches that capture the essential temperature depen­
dence and frequency dependence of viscoelastic material properties, and that are compatible
with current structural finite element analysis techniques, is an area of ongoing research.

Considerable recent effort has addressed the frequency dependence of material
behavior. The augmenting thermodynamic fields modeling method (Lesieutre and Mingori,
1990) is one such time-domain continuum model of material damping that preserves the
characteristic frequency-dependent damping and modulus of real materials-a physically­
motivated model compatible with current finite element structural analysis methods. In its
initial development, this method introduced single augmenting fields to model the behavior
of materials and structures with light damping. In subsequent work, the ability to model
high-damping materials with relatively weak frequency dependence using multiple aug­
menting fields was developed (Lesieutre, 1992). However, this early work was limited to
effectively one-dimensional stress states, such as those present in idealized (single-modulus)
structural bar and beam members.

Recent research extended the initial work to the general case of three-dimensional
stress states. introducing "anelastic displacement fields" (ADFs), which are special kinds of
augmenting fields (Lesieutre and Bianchini, 1994). Instead of addressing physical damping
mechanisms directly. as in the earlier approach, their effects on the displacement field are
considered. In the ADF approach, the total displacement field is comprised of two parts,
an elastic part and an anelastic part. An approach for determining needed material proper­
ties (model parameters) from available data was also developed. The general capabilities
of the approach have been demonstrated through modal analyses, stress-strain hysteresis
loops and frequency response analyses. The key practical benefit of the ADF approach is
that it leads to straightforward development of time-domain viscoelastic finite elements.

While dissatisfaction with available techniques has motivated several alternative lines
of research, two are most closely related to the ADF model. Both of these, the GHM model
(McTavish and Hughes. 1993: Golla and Hughes, 1985) and Yiu's model (Yiu, 1993), lead
to viscoelastic finite elements and use additional coordinates to model more accurately
material behavior. The ADF method is primarily distinguished from these in that it is a
direct time-domain formulation, not transform-based, and it yields finite elements using
conventional methods (i.e. the method of weighted residuals). In addition, the "dissipation
coordinates" of the GHM method are internal to individual elements, while the physically­
significant ADFs of AOF are continuous from element to element, reflecting its basis as a
field theory. The "internal unobservable degrees of freedom" ofYiu's model are introduced
as nodal variables using an analogy with a generalized lumped-parameter Maxwell model.

As it was intentionally developed with second-order dynamics, the GHM method is
quite compatible with current structural analysis methods, and has proven to be useful in
practice: both the ADF and Yiu's models may also be readily expressed in second-order
form. In its current state of development, Yiu's model assumes a single loss factor for all
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material moduli (e.g. shear and bulk for an isotropic material). In many respects, however,
finite element models that result from the use of the GHM method and especially Yiu's
method are quite similar to ADF models.

All three of these approaches have advantages over the MSE method in that they yield
linear time-domain finite element models, the frequency-dependent elastic and dissipative
aspects of structural behavior are represented in fixed (not frequency-dependent) system
matrices, modal damping is calculated concurrently with modal frequency without iteration,
the resulting complex modes more accurately reflect the relative phase of vibration at
various points and modal orthogonality is preserved.

The interested reader is referred to the references for the details of the various models
discussed. None of these approaches have explicitly addressed the essential temperature
dependence of material behavior.

INCORPORATlOl\ OF TEMPERATURE DEPENDEl\CE IN THE ADF MODEL

Recent research has addressed the incorporation of characteristic temperature-depen­
dent mechanical behavior in the ADF model. This advance is founded on the notion of
time-temperature superposition for thermorheologically-simple materials (cf., Ferry, 1980).
Motivated by a helicopter damper application, a simple structure serves as the focus for
theoretical development and numerical study. Figure I shows the general specimen and
loading configuration considered. This configuration is representative of elastomer charac­
terization experiments.

In such an experiment, a uniform elastomeric element is subjected to harmonic forced
vibration in simple shear: because of the viscoelastic nature of the material, some of the
energy of vibration is converted to heat. This distributed heat input changes the local
temperature of the material. Thermal conduction transfers some of this heat to the base
(environment), which is maintained at a fixed temperature. Local temperature changes
affect the rate at which the local anelastic displacement relaxes-higher temperatures
result in faster relaxation and lower apparent stiffness. Lower stiffness results in larger
displacements and possibly higher energy dissipation. If vibration energy is converted to
heat at a rate faster than the heat is conducted away, the local temperature increases. If the
temperature change is small enough. the material properties may not change appreciably,
and the rate of temperature increase slows monotonically as the specimen approaches a
kind of thermal equilibrium state. If the rate of temperature increase itself increases as the
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result of changing material properties, as illustrated in Fig. 2 [adapted from Hausmann
and Gergely (1992)], a phenomenon called "thermal runaway" is possible. Depending on
the magnitude of the temperature increase, the specimen may approach an alternative
thermal equilibrium state, or chemical reactions may change the fundamental nature of the
material. This general phenomenon has reportedly been observed in tests of helicopter lead­
lag dampers (Hausmann and Gergely, 1992), although the details of the materials and test
conditions were not reported.

The following sections describe key steps in the development of a model which
addresses these physical processes. To provide a point of departure for the development,
the first section summarizes the theory for the one-dimensional ADF model without t(}m­
perature dependence, the subsequent section develops the one-dimensional ADF model
with temperature dependence, and the next provides a numerical example of the use of this
model.

ONE-DIMENSIONAL ADF MODEL WITHOUT TEMPERATURE DEPENDENCE

The ADF model of linear viscoelasticity (Lesieutre and Bianchini, 1994) is based on a
decomposition of the total displacement field into two parts, one elastic, the other anelastic.
The anelastic displacement field is used to describe that part of the strain that is not
instantaneously proportional to stress. General coupled material constitutive equations
for: (1) the total; and (2) the anelastic stresses are developed in terms of the total and
anelastic strains, and may be specialized to the case of, for example, isotropic materials.

A key feature of the model is the absence of explicit time dependence in the material
constitutive equations. Apparent time-dependent or frequency-dependent behavior is
described instead by two sets of differential equations that govern: (1) the motion of mass
particles; and (2) the relaxation of the anelastic displacement field. These coupled governing
equations are developed in a parallel fashion, both involving the divergence of appropriate
stress tensors. Boundary conditions are also treated: the anelastic displacement field is
effectively an internal field, as it is driven exclusively through coupling to the total
displacement, and cannot be directly affected by external applied loads. ADF model
parameters may be readily developed from available complex modulus data.

A1alerial constitutive equations
In the present one-dimensional problem of simple shear, u(x, t) is the total transverse

displacement field, while uA(x, I) is the anelastic part of the displacement field. For clarity,



Fmite element modeling 423

a single ADF is used to model the anelastic behavior. (Multiple ADFs may be used to
model the behavior of materials that exhibit relatively weak frequen<;y dependence.) The
constitutive equations for the shear stress and the anelastic shear stress are (Lesieutre et
al., 1995):

(JA = Gu(l;' -CU'A) (anelastic stress).

(I a)

(I b)

Note that these are "equations of state" in a thermodynamic sense, in that there is no
explicit time dependence. Gll is the unrelaxed or high-frequency dynamic shear modulus of
the material and c is a coupling property. The quantity cGu could also be considered an
anelastic shear modulus, GA.

Governing differential equations
The "equation of motion" governing the dynamics of mass particles in this one­

dimensional elastomeric specimen is :

(2)

where pix, t) is a distributed shear load. The boundary conditions are the familiar ones
involving the total displacement or stress at each end of the specimen.

The "relaxation equation" governing the time evolution of the specimen anelastic
displacement field uA(x, t) is found using a fundamental assumption of non-equilibrium
thermodynamics, namely that the rate of change of the state variable describing an irre­
versible process is proportional to the corresponding conjugate quantity. Alternatively, the
quantity (JA may be interpreted as a "thermodynamic force" driving an anelastic strain
component, I:

A
, towards an equilibrium value: (JA is zero when £A takes on its equilibrium

value. Then, the time rate of change of I:
A is proportional to the difference between the

value of £A and its instantaneous equilibrium value, tA. The constant of proportionality is
the inverse of the relaxation time at constant strain, Q.

The "relaxation equation" governing the time evolution of the anelastic displacement
field is given by:

Note that this equation is first-order in time.
The thermal behavior of the (uniform) specimen is described by:

(\t-kT' = r(x,t),

(3)

(4)

where T is the temperature, Cv is the heat capacity at constant strain, k is the thermal
conductivity and r(x. t) is the distributed heat source strength. This heat source strength is
due to internal energy conversion ("dissipation") and is given by:

(5)

Note that this is quadratic in the anelastic strain rate.

A classical mechanical analogy
In that a single-ADF model may be considered to be a continuum version of the

standard anelastic solid, a physical interpretation of some of the quantities involved in the
one-dimensional ADF model may be advanced in terms of a classical mechanical analogy
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Fig. 3. Mcchal1lcal analogy for single ADF model.

(Lesieutre ('{ al.. 1995). Consider the lumped-parameter system shown in Fig. 3, comprised
of a parallel spring-dashpot unit in series with a spring unit. The displacement and force at
the right side correspond to the total strain and stress, respectively, while the internal
displacement corresponds to the anelastic strain. The anelastic stress is analogous to the
force in the dashpot unit. The energy dissipated in the dashpot is quadratic in the anelastic
strain rate.

The property G u may be considered the high-frequency stiffness, while the quantity
Gu(c - I)c may be considered the low-frequency stiffness. The parameter Q determines the
frequency near which the stiffness transition occurs and peak damping is observed.

O!\E-DIMEI\SIONAL ADF \ilODEL WITH TEMPERATURE DEPENDENCE

Temperature dependence was not considered in the development of the preceding
equations. The key step in the inclusion of temperature dependence is to consider the
elastomer to be a thermorheologically-simple material. In such materials, temperature
effects are experienced primarily through a temperature-dependent factor multiplying the
time scale (Brinson and Knauss, 1991 ). This quantity, 1.T( T), is called the time-temperature
shift factor.

For a thermorheologically-simple material, time and temperature are related through
a quantity called reduced time, (R (Rogers and Fowler, 1991). This relationship is most
conveniently defined in differential form as (Moreland and Lee, 1960):

(6a)

Use of the differential relationship is essential when the system of interest is non-uniform
in temperature. Alternatively, the corresponding time rates of change are related by:

d d
dt

R
= 1.[ dl' (6b)

Note that because 1.T generally decreases with increasing temperature, eqns (6a,b) may be
interpreted physically as follows: an event that occurs in a fixed increment of reduced
time (at a reference temperature) occurs in an actual time that decreases with increasing
temperature [eqn 6(a)] ; or actual relaxation rates increase with increasing temperature [eqn
(6b)].

Now, if the material properties Gu ' c and Q are determined from data expressed relative
to "reduced frequency" [related to reduced time: Soovere and Drake (1985)] spanning the
operational temperature and frequency range of interest, they may be regarded as constant
parameters. (Note that multiple ADFs may be needed to represent adequately the data
over a broad operating range.) The material constitutive equations [eqns (la,b)] and the
equation of motion [eqn (2)] are thus unchanged from those presented in the preceding
work. However, the relaxation of the anelastic displacement field proceeds at a higher rate
at higher temperatures. Since material properties have been determined with respect to
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reduced frequency in the present development, the time derivative in the relaxation equation
previously presented [eqn (3)] is understood to be with respect to reduced time (as is the
relaxation parameter. Q).

(7)

Using the time -temperature shift factor from eqn (6b), this relaxation equation may
then be expressed in terms of actual time as:

cG
U ·"A G" G "A 0:Xr Q U - uU +c uU = . (8)

This may be further simplified through the introduction of a new parameter. QT, that
effectively describes how the actual relaxation rate changes with temperature. It is defined
in terms of the relaxation parameter with respect to reduced time and the time-temperature
shift factor as :

(9)

As noted. the general effect of increasing temperature is to decrease :xT , thereby increas­
ing the relaxation rate. Using this new parameter. the relaxation equation may be expressed
in essentially the same form as eqn (3), changed only by the presence of a temperature­
dependent relaxation parameter, QT-

cG
U ·"A G" G "A 0-0::;- u - uU + c uU = -

The heat source strength [eqn (5)] may then be expressed as:

(10)

Time-temperature shift factor
A classical Arrhenius relationship for the time-temperature shift factor is used in what

follows for simplicity. Such a relationship has the following form:

(11 )

where a and Trer are material parameters. Time-temperature shift factors for real materials
are often determined empirically and usually take forms other than the Arrhenius form.
An important such practical form is the "WLF eq uation" (Ferry, 1980).

NUMERICAL EXAMPLE AND RESULTS

The forced simple shear vibration problem described was addressed numerically using
the one-dimensional ADF theory with temperature dependence. A small number of finite
elements, typically four to 10, were used to explore the general ability of the subject method
to capture essential features of the mechanical and thermal response.

The specimen geometry, material properties and load amplitude and frequency used
in the numerical examples were selected to be representative of elastomer characterization
tests. The specimen was assumed to have a finite cross-section with thermally insulated
sides, so that little heat could be lost to the environment on the sides. In addition. the
specimen had a fixed temperature thermal boundary on one face in order to allow for heat
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Table I Parameters used in numerical examples

Thickness l.
Area .J
Density I'

Shear modulus (high frequencYI (;"
Coupling parameter
Relaxation parameter Q

Modulus (iow frequency) G,
Max loss factor ,/"."
Temperature shift parameter ({
Reference temperature T".,
Thermal conductivity (untreated) j,

Heat capacity' C"

Specimen base temperature T"
Force amplitudes F
Force frequency I
Integration time step !lr

0.00508 m
6.45 x 10- 4 m' (0.0159 x 0.0406 m)
926.8 kg m- 3

]O.5xI06 Nm
U
2513 S '

3.5 X 10";-..j m-'
0.577
9000 K
300 K
5.00Wm 'K-'(0.155Wm 'K-')
1.65xIOoJm- 3 K-'
285 K
1500,3000 N
40 Hz
O.O[ s

flow to the environment, approximating the effect of attachment to a large thermal mass
(or heat sink) having considerably higher thermal conductivity than the material specimen
itself.

In order to limit peak temperature excursions and to speed attainment of thermal
equilibrium. specimen thermal conductivity was increased by about a factor of 30 over that
of an untreated elastomer; the effect is similar to that of using internal metal "shims",
which is done in practice for several reasons. Dependence of thermal conductivity and heat
capacity on temperature was neglected in the analysis. Table 1 summarizes important
parameters used in the numerical simulation.

The governing differential equations were discretized using the method of weighted
residuals. Figure 4 illustrates the one-dimensional shear finite element used; it has three
nodal variables at each end. each of which is interpolated linearly across the element. The
nodal variables are: u, total displacement; 1/". anelastic displacement; and T, temperature.

The resulting discretized elemental equations have the following general state-space
form:

I'~I
0 0 0

i](~1 HI
{i 0 k -k

I 0 0
Ii -I 0 0

c + (12)
0 0 :xTQk 0 1(\ 0 -k ck

i

lo 0 0
t 0 0 0

C

where individual sub-matrices involve terms like:

Fig. 4 Single ADF finite element for simple shear with changing temperature.
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m = pALel ""mass"

k = GlIA Lei "stiffness"

C = c,ALc' "heatcapacity"

K = kA.Lc' ""thermal conductivity"

R = (Yrck:O)(uA): = (Ck/Or)(liA): ""heat generation".

The elemental equations of evolution may also be expressed in second-order form as:

427

[;\1][ x] + [C] lxj + [K] :x] = (f:,

where the individual matrices have the following general structure:

(13a)

0 0 0
/11 0 0] " Ii I k ~k

~]
u FlC

li\ I. + uA0 0 o 11:~ + 0 YrOk 0 -k ck 0\. (13b)

tl0 0 o ,T
( )li\

0 0 T 0,
0 C

Note that the heat generation terms. R, that "force" the thermal response in eqn (12), have
been moved to the left-hand side. The following equations provide additional details of the
individual matrices and nodal vectors:

III l
lll\ ,

(x)
T ,

II,

lll~
T:

/11·3 0 0 I)/;6 0 0

0 0 0 0 0 0

0 0 0 0 0 0
[!VI] =

m/6 0 0 m3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ck ck
0 0 0 _ ..- 0

Or Or

(b~(ui;u~)) C ~ (b~ (q~~31\)) C
() () ~

3 6
[C] =

0 () 00 0 0

ck ck
()

Or
0 0

Or
0

(~;Ci i~l))
C _(~~ Ci~ lii\ ) )

C
0 0 -

6 3

(14a)

(14b)

(14c)
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Tip force amplitude = 1500 N
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Fig. 5. Tip displacement time history (1500 N).

k -k 0 -k k 0

-k ck 0 k -ck 0

0 0 K 0 0 -K
[K] =

-k k 0 k -k 0

k -ck 0 -k ck 0

0 0 -K 0 0 K

fdt)

0

0
[f)

f~ (t)

0

0

7

(14d)

(14e)

The discretized equations were actually solved in second-order form [eqns (13a,b)]
using the Newmark single-step integration scheme (Bathe, 1982).

Placing the heat generation terms on the left-hand side of eqns (l3a,b) results in a non­
symmetric system "damping" matrix. Also note that all of the problem non-linearities are
included in this damping matrix. These non-linearities include terms multiplied by (XT, which
is a function of the (changing) temperature, as well as the heat generation terms, which are
quadratic in the anelastic displacement rates.

To accommodate these non-linearities, an iterative solution scheme was employed.
Values of the nodal quantities and their first time derivatives from the end of the previous
time step were used to obtain an approximate damping matrix at the beginning of each
new time step. Subsequent solutions at the current time step were used to adjust iteratively
the damping matrix until the nodal quantities converged to within I%. This process was
repeated at every time step.

The governing matrix equations were integrated forward in time. The specimen was
initially motionless, at a constant temperature. At time t = O. harmonic forcing was begun.
Nodal displacements and temperatures were determined as functions of time.

Figures 5-8 show typical response results for a relatively low force level of 1500 N. As
shown in Fig. 5, the tip displacement magnitude is stable over time following a small initial
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Fig 6. Tip temperature-time history (1500 "J).

transient; the peak displacements correspond to roughly 20% strain. The temperature
response shown in Fig. 6 gradually approaches an equilibrium value just a few degrees
above that of the base. At this equilibrium temperature, the heat input to the specimen due
to material dissipation is balanced by the heat flow out due to thermal conduction. Figure
7 shows the temperature distribution through the thickness of the specimen at t = 10 s. As
expected, the temperatures decrease from the insulated free face to the cooled base. Figure
8 shows the tip force-displacement trajectory ('"hysteresis loops"). Again, this indicates
stable specimen response, as the trajectories converge to a single closed curve.

Figures 9-12 show corresponding results for a doubled force level of 3000 N. In this
case, the displacement response amplitude shown in Fig. 9 is nearly constant for a period of
time, then increases rapidly as the specimen temperature increases; the peak displacements
correspond to roughly 100% shear strain. The temperature shown in Fig. 10 increases
linearly over the initial period. then increases more rapidly. This has the characteristics of
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Tip Displacement (m)

Fig. 8. Hysteresis loops (\500 N).

the "thermal runaway" behavior described previously. (Although not clearly shown in the
figure, the temperature does approach a higher equilibrium temperature.) Figure 11 shows
the temperature distribution through the thickness of the specimen at t = 10 s. The tem­
perature change at the tip is more than an order of magnitude higher than that associated
with the lower force level. Figure 12 shows the tip force-displacement trajectory for the
higher force case. The changes in slopes and shapes of these trajectories show a marked
transition from stiff, lossy behavior to softer, more lossy behavior.

These results appear to indicate the potential of the present approach to accommodate
both the temperature-dependent and frequency-dependent behavior of thermo­
rheologically-simple viscoelastic materials. This potential will continue to be explored in
the future through more complex numerical examples and through laboratory study.

Tip force amplitude = 3000 N
0.004
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Fig. 9. Tip displacement-time history (3000 N).
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Fig. 10. Tip temperature-time history (3000 N).
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SUMMARY

A physically-motivated method for modeling the dynamic behavior of viscoelastic
materials and structures continues to be developed. This method, focused initially on
capturing the essential frequency-dependent behavior of viscoelastic materials, has been
extended to address characteristic temperature dependence as well. This extension is based
on the assumption of thermorheologically-simp1e material behavior. The approach has
been illustrated through a numerical example, and appears to capture successfully some of
the features of the observed phenomenon of "thermal runaway".

These results suggest direction for the continued development of a general three­
dimensional approach. Such an approach would be suitable for describing therrno­
rheologically-simple viscoelastic behavior under complex states of stress. Anticipated
aerospace applications of this approach might include elastomeric bearings and dampers,
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Fig. I\. Nodal temperatures (3000 N; I = 10 s).
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Fig. 12. Hysteresis loops (3000 N).
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vibration damping treatments. solid propellant rocket motors, non-destructive evaluation
of composite structures and statistical energy analysis of structural acoustics.

Arknml1edgements-The authors gratefully acknowledge the Centro Italiano Ricerche Aerospaziali for financial
support and Dr Edward C Smith of Penn State University for suggesting the elastomeric damper problem that
motivated this work.

REFERENCES

Bathe. K. J. (19X2). Fillitc ElCfIICllt Proccdurc ill Ellqineeri!lq Anulysis. Prentice Hall, Englewood Cliffs, New
Jersey.

Brinson, L C. and Knauss, W. G. (1991). Thermorheologically-complex behavior of multi-phase viscoelastic
materials. 1. .'vlech. Phrs. Solids 39,859 -880.

Ferry, J D. (1980). Viscoelastic Propertics otPohmers. 3rd edn. John Wiley, New York.
Golla, D. F. and Hughes, P. C. (1985). Dynamics of viscoelastic structures-a time-domain, finite element

formulation. J. Appl. Mech. 52, 897906
Hausmann. G. and Gergely. P. (1992). Approximate methods for thermoviscoelastic characterization and analysis

ofelastomeric lead-lag dampers. Prucccdinqs ofthe 18th Europea!l Rotorcraft Forum, Avignon, France, 15-18
September.

Lesieutre, G. A. (1992). Finite elements for dynamic modeling of uniaxial rods with frequency dependent material
properties. In!. 1. Solids Structures 29, 1567 1579.

Lesieutre, G. A. and Bianchini. E. B. (1994). Time-domain modeling of 3-D continuum viscoelasticity using
anelastic displacement fields. 1. rihr. Acou\!. 117. [n press.

Lesieutre, G. A. and Mingori. D. L (1990). Finite element modeling of frequency-dependent material damping
using augmenting thermodynamic fields . .1 Guidancc Comrol Dynum. 13, 1040-1050.

Lesieutre, G. A.. Bianchini, E. and Maial1l. A. (1995). The use of anelastic displacement fields in finite element
modeling of viscoelastic structures. 1. GuidallC('. Comru! Drllum. In press.

McTavish, D. J. and Hughes. P C (1993). 'vlodeling of linear viscoelastic space structures. 1. Vihr. Aroust. 115,
103-113.

Moreland, L W. and Lee. E. H (1960) Stress analysis for linear viscoelastic materials with temperature variation.
Trans. Soc. Rhco!ogr IV, 233-263.

Nashif, A. D .. Jones, D. L G. and Henderson . .I. P. (1985). Vihration Damping. John Wiley, New York.
Rogers, L C. and Fowler. B. (\991). Modelling temperature shift and complex modulus data thru real-imaginary

relationships and wicket plots. Proceedillq.\ of t!le ACS Rubber Division Conference. Detroit, Michigan, 9
October.

Rogers, L C. Johnson. C. D. and Keinholl. [) A. (1981). The modal strain energy finite element method and its
application to damped laminated heams SIwek Vihr. Bull. 51.

Soovere. J. and Drake. M. L (1985) 4"1'11\1'11('(' SlrucllIres Technology Damping Design Guide. AFWAL-TR-84­
3089.

Yui, Y. C. (1993). Finite element analysis of struetures with classical viscoelastic materials. Proceedings of the
34th Structurcs, Sirucllmd D\'I1amics. IIl1d ;Hllierials Conference, La Jolla, California. April, pp. 2110-2119.


